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Baylor WMCS Program 

• Wireless and Microwave Circuits and Systems 

• Wireless and Microwave Education and Research in a 

Caring, Christian Environment   

• Launched in 2008. 



Research 

• Faculty 

– Dr. Charles Baylis, Co-Director, microwave power 

amplifier design, waveform diversity 

– Dr. Randall Jean, Co-Director, microwave sensors and 

metrology 

– Dr. Yang Li – antenna design 

– Dr. Robert J. Marks II – computational intelligence 

– Dr. Steve Eisenbarth – wireless networks 

– Dr. Mike Thompson - communications 

• Graduate and undergraduate student research and 

teaching assistants 

 



WMCS Teaching Laboratory 

• Founded in 2009 with 

partial sponsorship from 

Agilent Technologies. 

• “Hub” for hands-on 

teaching activity. 

• Provides hands-on 

component for 

RF/Microwave Circuits 

course sequence. 



WMCS Advisory Board and 

Mini-Symposium 
• Industry Advisory Board 

created in 2009 to assist 

with educational and 

research mission. 

• Annual Mini-Symposium on 

Wireless and Microwave 

Circuits and Systems 

– Student/industry forum 

– 5 universities participated 

in 2011. 

 



Transmitter Amplifier Constraints 
• Amplifiers must transmit large amounts of power 

with high power efficiency.   

• Radar spectrum criteria imposed in the Radar 

Spectrum Evaluation Criteria (RSEC), which are 

determined by the National Telecommunications 

and Information Administration (NTIA). 

• Spectral mask outlines the required confines of 

the signal:    
*Reprinted from J. de Graaf, H. Faust, J. Alatishe, 

and S. Talapatra, “Generation of Spectrally Confined 

Transmitted Radar Waveforms,” Proc. IEEE Conf. on 

Radar, 2006, pp. 76-83 
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Sources of Nonlinearity 

• A major source of spectral spreading is 

third-order intermodulation distortion in the 

amplifier transistor. 

• Assume a third-order nonlinear system 

approximated by 

 

• Stimulate with a two-tone input signal:   
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Intermodulation Results 

• For a bandpass signal, each frequency at 

which the signal is nonzero represents a 

“tone”.   

• In general, all pairs of tones intermodulate: 

– In-band distortion 

– Out-of-band distortion (“spectral spreading”) 

 



How to Remove the Sidelobes? 
• Filtering? 

– Radar systems often operate in megawatt range. 

– It is difficult to use microstrip cavity filter capabilities 

over 1 kW. 

– Not cost-effective or practical 

• Linearization 

– Remove the sidelobes by making the amplifier more 

linear. 

– We need to maintain efficiency at the same time.   
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Linearity vs. Efficiency 
• Efficiency increases with output power. 

– GaAs MESFET power amplifier example shown below. 

• Linearity decreases with increasing output power for 

amplitude modulated signals. 
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Efficiency Measures 

• Drain Efficiency: 

 

• Power-Added Efficiency: 

 

 

• Overall Efficiency:  
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Linearity Measures 
• Adjacent Channel Power Ratio (ACPR) 

– Ratio of the power in a specified band outside the signal to the 

RMS power in the signal* 

– Examines how nonlinearity affects adjacent channels. 

• Error Vector Magnitude 

– Vector distance between desired and measured signal vector 

normalized by the signal amplitude 

• Carrier-to-Intermodulation (C/I) Ratio 

– Measured in a two-tone intermodulation test. 

– Raab:  C/I should be at least 30 dB for a linear PA.* 

• Noise Power Ratio  

– Measures in-band distortion. 

*Source:  F. Raab, P. Asbeck, S. Cripps, P. 

Kenington, Z. Popovic, N. Pothecary, 

J. Sevic, and N. Sokal, “RF and Microwave 

Power Amplifier and Transmitter  

Topologies, Part 1,” High Frequency 

Electronics, May 2003.   
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Amplifier Classes 
• Class A: 

– Max Drain Efficiency:  50% 

– Best Intrinsic Linearity 

• Class B:   

– Max Drain Efficiency:  78.5% 

– Reduction of Linearity 

• Class C: 

– Bias below threshold. 

– Higher efficiency but less linearity than B. 

• Class E, F:  Higher efficiency switching modes. 



Linearity and Efficiency Configurations 

• Acknowledgment:  Article in IEEE 

Transactions on Microwave Theory and 

Techniques and 4-part series of articles in 

High Frequency Electronics by Raab et al. 

provide an excellent survey of different 

topologies and their advantages. 

• Much information from these articles is 

used in this section.   
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Predistortion 

• “Uncompress” the compression by a component 

with an oppositely shaped compression 

characteristic.   

 

 

 

 

• Challenging for systems with memory 

• Requires adaptive lookup table  memory 

requirements can be large.   
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Feedforward 

• The linear input signal is used as a reference to subtract 

unwanted spectral components from the output signal. 

 

 

 

 

 

• Linear error amplifier requires additional DC power. 

• Combiners also contribute to efficiency decrease.   

• Drift is possible; may require a control system.  

Acknowledgment:  F. Raab, P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. Pothecary, 

J. Sevic, and N. Sokal, “RF and Microwave Power Amplifier and Transmitter  

Topologies, Part 4,” High Frequency Electronics, November 2003.   

18 



Envelope Tracking 
• The supply voltage is adjusted based on envelope amplitude. 

• The efficiency is improved, but buck/boost converters require 

additional DC.   

• Works well for high peak-to-average-power ratio (PAPR): 

*Pictures reprinted from G. Wimpenny, “Improving Multi-Carrier PA Efficiency Using Envelope 

Tracking,” RF Engineer  Network, http://www.rfengineer.net, April 2009. 

Additional Source:  F. Raab et al., “Power Amplifiers and Transmitters for RF and Microwave” 

IEEE Transactions on Microwave Theory and Techniques, pp. 814-826, Vol. 50, No. 3, March 

2002.   
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Envelope Elimination and Restoration 

(Kahn Technique) 

• The amplitude modulation is removed from 

the signal and re-inserted after the PA. 

• Allows the amplitude to run at optimum 

efficiency without amplitude distortion.  

• Must align amplitude and phase modulation 

(need low AM-to-PM conversion).* 

*Source:  F. Raab et al., IEEE Transactions on Microwave Theory and Techniques,  

Vol. 50, No. 3, March 2002.   
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Doherty 

• Carrier Amplifier:  Class B 

• Peaking Amplifier:  Class C 

• Peaking amplifier turns on when the signal 

becomes large. 

• Linearity is at Class B level from this design. 
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• The amplitude modulation M(t) is “hidden” in the phase 

and returned to the amplitude after the summer: 

 

 

 

 

 

 

 

 

 

• But how can a summer be implemented? 

LINC (Linear Amplification with 

Nonlinear Components) 
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Implementation Options 

• 180-Degree Coupler 

• Chireix Outphasing Combiner* 

• Linearity and efficiency vary by modulation 

scheme for each design. 

• 180-degree coupler is more robust for 

linearity. 

*H. Chireix, “High Power Outphasing Modulation,” Proceedings of the IRE, Vol. 

23, pp. 1370-1392, November 1935.   



180-Degree Coupler 
                             

.      

 
,   

 
 

 

 

 

• It is matched and reciprocal. 

• Power can be lost to the fourth-port termination, 

depending on the modulation scheme.   

*Reprinted from J. de Graaf, H. Faust, J. Alatishe, and S. Talapatra, 

“Generation of Spectrally Confined Transmitted Radar Waveforms,” Proc. 

IEEE Conf. on Radar, 2006, pp. 76-83 
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Chireix Combiner 
                             

.      

 
,   

 
 

 

 

 

• Combiner ports are not isolated, so the 

impedances seen by each amplifier stage can 

change dynamically. 
*Reprinted from F. Raab, P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. 

Pothecary, J. Sevic, and N. Sokal, “RF and Microwave Power Amplifier and 

Transmitter Technologies, Part 1,” High Frequency Electronics, May 2003.   

**A. Birafane and A. Kouki, “On the Linearity and Efficiency of Outphasing 

Microwave Amplifiers,” IEEE Transactions on Microwave Theory and 

Techniques, Vol. 52, No. 7, July 2004, pp. 1702-1708.   
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by 
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Load-Pull Efficiency Comparison 

• Both Designs:  Maximum 

Efficiency near 50 ohms 

• Test with CW (M(t) = 1) 

• Maximum PAE for Chireix 

design = 50% 

• Maximum PAE for 180-

degree coupler design = 

51% 
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GaAs PHEMT Amplifier for      

Different M(t) Levels 

• 180-degree coupler is perfect parabola  

Excellent linearity 

• Chireix demonstrates linearity flaws.   

             M(t) 
             M(t) 

         GT (W/W)        PAE (%) 
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Joint Optimization:  The Way 

Forward 
• State-of-the-art approaches to improving 

spectral conformity have traditionally 

included separate examination of  

– Circuit design 

– Waveform design 

• The technology and theory now exist to 

simultaneously optimize both! 

• Knowing the circuit nonlinearities speeds 

the optimization   Wirtinger Calculus for 

TIPP Systems. 

 30 



TIPP Systems 

• Assume a time invariant periodicity 

preservation (TIPP) system.   

 

LTI:  All currents and 

voltages oscillate at the 

same frequency. 

 

TIPP:  All currents and 

voltages are periodic with 

the same period 

(harmonic levels can 

change). 
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TIPP Systems 

• Assume a TIPP Operator     : 

 

• There is a corresponding operator on the 

vectors of Fourier coefficients: 

 

• For a particular “operating point” large 

signal, Z is a matrix.     
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Affine Approximation 

• Consider a nonlinear function f (x): 

 

 

 

 

 

• Affine approximation around the operating 

point of a nonlinear function 

x
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Wirtinger Calculus for TIPP 

Systems 

• In terms of the Fourier series coefficient 

vectors: 

 

 

• The TIPP parameters give an affine 

approximation around a nonlinear 

operating point.   
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                   provides phase 

correction for harmonic 

conversion.  

*D. Root, “A New Paradigm for Measurement, Modeling, and Simulation of Nonlinear  

Microwave and RF Components,” Presentation at Berkeley Wireless Research Center,  

April 2009.  

1X-parameters is a  

registered trademark  

of Agilent Technologies.   
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**C. Baylis et al., “Going 

Nonlinear,” IEEE Microwave 

Magazine, April 2011.    
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Fast Load-Impedance 

Optimization Algorithm* 

• Traditional: 

– 400 Γ states 

– Maximum Power = 22.76 
dBm 

• Steepest Ascent: 

– 17 Γ states 

– Maximum Power = 22.72 
dBm 

• Accurate results for small 
number of simulations 

*C. Baylis, L. Dunleavy, S. Lardizabal, R.J. Marks II, and A. Rodriguez, “Efficient  

Optimization Using Experimental Queries: A Peak-Search Algorithm for Efficient  

Load-Pull Measurements,” Accepted for Publication in Journal of Advanced  

Computational Intelligence and Intelligent Informatics, September 2010.    



Conclusions 

• Spectral spreading from radar systems must be 

mitigated, but not at the cost of system efficiency. 

• Several useful design approaches exist for 

linearity and efficiency improvement.     

• An apparent solution is in joint waveform and 

circuit optimization with the Wirtinger calculus. 

• An approach and test platform for real-time load-

pull and waveform optimization is under 

development at Baylor University. 
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